The Wiener Number of Hexagonal Net
نویسندگان
چکیده
The Wiener number of a molecular graph, or more generally of a connected graph, is equal to the sum of distances between all pairs of its vertices. A graph formed by a hexagon in the centre, surrounded by n rings of hexagonal cells, is called an n-Hexagonal net. A graph formed by a series of n hexagonal cells is called an n-Hexagonal chain. The purpose of this paper is to obtain the Wiener number of an n-Hexagonal net and of an n-Hexagonal chain. The Wiener numbers of the graphs of normal alkanes are also obtained.
منابع مشابه
The Wiener Number of the Hexagonal Net
The Wiener number of a molecular graph, or more generally of a connected graph, is equal to the sum of distances between all pairs of its vertices. A graph formed by a hexagon in the centre, surrounded by n rings of hexagonal cells, is called an n-hexagonal net. It is shown that the Wiener number of an n-hexagonal net equals i( 164n5 30n3 + n).
متن کاملWiener Number of Hexagonal Jagged-rectangles
The Wiener number of a connected graph is equal to the sum of distances between all pairs of its vertices. A graph formed by a row of n hexagonal cells is called an n-hexagonal chain. Wiener number of an n x m hexagonal rectangle was found by the authors. An n x m hexagonal jagged-rectangle whose shape forms a rectangle and the number of hexagonal cells in each chain alternate between n and n 1...
متن کاملSecond and Third Extremals of Catacondensed Hexagonal Systems with Respect to the PI Index
The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural features of organic molecules. The PI index of a graph G is the sum of all edges uv of G of the number of edges which are not equidistant from the vertices u and v. In this paper we obtain the second and third extremals of catacondensed hexagonal systems with respect to the PI index.
متن کاملGeneralized Wiener Indices in Hexagonal Chains
The Wiener Index, or the Wiener Number, also known as the “sum of distances” of a connected graph, is one of the quantities associated with a molecular graph that correlates nicely to physical and chemical properties, and has been studied in depth. An index proposed by Schultz is shown to be related to the Wiener Index for trees, and Ivan Gutman proposed a modification of the Schultz index with...
متن کاملWiener Number of Vertex-weighted Graphs and a Chemical Application
The Wiener number W (G) of a graph G is the sum of distances between all pairs of vertices of G. If (G,w) is a vertex-weighted graph, then the Wiener number W (G,w) of (G,w) is the sum, over all pairs of vertices, of products of weights of the vertices and their distance. For G being a partial binary Hamming graph, a formula is given for computing W (G,w) in terms of a binary Hamming labeling o...
متن کامل